Applied Stochastic Processes (2018) - Final exam

Time: 3 hours, Total marks: 50

- 1. Consider the random walk S_n , $n \ge 0$ where $S_0 = 0$ and $S_n = \xi_1 + \xi_2 + \dots + \xi_n$ for all $n \ge 1$. Here ξ_i , $i \ge 1$ are i.i.d. with $\mathbf{P}(\xi_1 = +1) = p$, $\mathbf{P}(\xi_1 = -1) = 1 - p$ and $1/2 . Let <math>\phi(x) = [(1-p)/p]^x$, $x \in \mathbb{Z}$.
 - (a) Show that $\phi(S_n)$, $n \ge 0$ is a martingale with respect to $\mathcal{F}_n = \{S_1, S_2, \cdots, S_n\}$. [4 marks]
 - (b) Let T_x = inf{n : S_n = x}. For a < 0 < b integers, let N = T_a ∧ T_b := min(T_a, T_b). Show that P(N < ∞) = 1. [5 marks]
 Hint: If the random walk takes b a consecutive +1 steps at any point of time, it will be out of the interval (a, b).
 - (c) Show that $\phi(S_{N \wedge n})$, $n \ge 0$ is a martingale with respect to $\mathcal{F}_n = \{S_1, S_2, \cdots, S_n\}$. [3 marks]
 - (d) Show that $\mathbf{E}\phi(S_N) = 1$. [4 marks]
 - (e) Using the above show that for a < 0 < b

$$\mathbf{P}(T_a < T_b) = \frac{\phi(b) - 1}{\phi(b) - \phi(a)}.$$
 [3 marks]

(f) Show that

$$\mathbf{P}(T_a < \infty) = \left[\frac{1-p}{p}\right]^{-a}$$
. [2 marks]

- 2. Let X_n , $n \ge 0$ be a branching process with $X_0 = 1$. Define the sequence $Y_r = X_{2018r}$, $r \ge 0$.
 - (a) Show that $Y_r, r \ge 0$ is a branching process. [4 marks]
 - (b) Let ϕ be the probability generating function of X_1 . Find the probability generating function of Y_1 . [4 marks]
- 3. Consider an infinitely many server queue (customers immediately find a server) with an exponential service time distribution with parameter μ . Suppose customers arrive in batches with the interarrival time following an exponential distribution with parameter λ . The number of arrivals in each batch is assumed to follow the geometric distribution with parameter ρ , $(0 < \rho < 1)$, i.e.

P(no. of arrivals in a batch is
$$k$$
) = $\rho^{k-1}(1-\rho)$, $k = 1, 2, \cdots$.

Formulate this process as a continuous time Markov chain and determine explicitly the *Q*-matrix (infinitesimal matrix) of the process. **[5 marks]**

- 4. Customers, with independent and identically distributed service time distribution H (and density h), arrive at a counter in the manner of a Poisson process with parameter λ . A customer who finds the server busy joins the queue with probability p, (0 . Derive the transition probabilities of the Markov chain embedded at the points of departure of customers. [6 marks]
- 5. Let me first recall the simple stochastic epidemic. We have a population of size n + 1, with n susceptibles and 1 infected initially. Let X_t and Y_t denote the number of susceptibles and the number of infected, respectively, at time t. Given that at time t, $X_t = a$ and $Y_t = n+1-a$, we assume that during the time interval t to $t + \Delta t$, the probability of exactly one new infection is $\beta a(n+1-a)\Delta t + o(\Delta t)$ and that of no new infection is $1 \beta a(n+1-a)\Delta t + o(\Delta t)$. There are no removals and the infected (also infectious) person remains in circulation foreover.

Denote $p_r(t) = \mathbf{P}(X_t = r), 0 \le r \le n$ and let F(x, t) denote its probability generating function:

$$F(x,t) = \sum_{r=0}^{n} p_r(t) \cdot x^r$$

Show that $F(x,0) = x^n$ and

$$\frac{\partial F}{\partial t} = \beta (1-x) \left(n \frac{\partial F}{\partial x} - x \frac{\partial^2 F}{\partial x^2} \right) \qquad [10 \text{ marks}]$$